Type Test Verification Report

We

Company name:	Suzhou Bytewatt Technology Co., Ltd.
Postal address:	Room 1004-1, Tantaihu Building, No.9 East Taihu Road,
	Wuzhong District, Suzhou City, P.R.China
Postcode:	215000
Telephone number	+86 180 1268 7058
E-mail address	info@byte-watt.com
Web:	www.byte-watt.com

declare that the test report is issued under our sole responsibility and belongs to the following product:

Product(s): Model(s): Parameter(s):	Hybrid Inverter BW-INV-SPH3.6K INV Parameter: MPPT Voltage Range: 100 ~ 550 V Max. PV Input Power: 7200 W Rated output Apparent Power: 3600VA IP Protection: IP65 (Outdoor) Humidity:0~90% (No Condensing)
Test date	2022.12.1
Test location	Suzhou Bytewatt Technology Co., Ltd.
Report number	BWG9822120101.2

Singed for and on behalf of:

Baclin, Jan

Place of issue

2023-3-16 Date of issue

Compli	ance Verification Report –Tests for Inverter Connected Power Ge	enerating					
Module	Modules – test record						
1. Opera	ting Range:						
1	Voltage = 85% of nominal (195.5 V),	Pass					
	Frequency = 47 Hz, Power Factor = 1,						
	Period of test 20 s						
2	Voltage = 85% of nominal (195.5 V),	Pass					
	Frequency = 47.5 Hz, Power Factor = 1,						
	Period of test 90 minutes						
3	Voltage = 110% of nominal (253 V),						
	Frequency = 51.5 Hz, Power Factor = 1,						
	Period of test 90 minutes						
4	Voltage = 110% of nominal (253 V),	Pass					
	Frequency = 52.0 Hz, Power Factor = 1,						
	Period of test 15 minutes						
5	Voltage = 100% of nominal (230 V),	Pass					
Frequency = 50,0 Hz to 50,5 Hz, Power Factor = 1, RoCoF 1Hz/s,							
	Period of test 0,5 seconds						
6	Voltage = 100% of nominal (230 V),	Pass					
	Frequency = 50,0 Hz, Power Factor = 1,						
	Period of test 90 minutes						

4

2. Power Quality – Harmonics:								
Power Generat	ting Module te	sted to BS EN 61	000-3-2					
Prated				3.6 kVA				
Harmonics	50%P	rated	100%	Prated	Limits			
	Amps	%	Amps	%	1 phase			
2	0.091	0.85%	0.157	0.73%	1.080			
3	0.158	1.48%	0.309	1.44%	2.300			
4	0.018	0.17%	0.027	0.13%	0.430			
5	0.063	0.59%	0.074	0.35%	1.140			
6	0.019	0.18%	0.023	0.11%	0.300			
7	0.055	0.51%	0.076	0.36%	0.770			
8	0.011	0.10%	0.007	0.03%	0.230			
9	0.039	0.36%	0.052	0.24%	0.400			
10	0.009	0.08%	0.011	0.05%	0.184			
11	0.045	0.42%	0.044	0.21%	0.330			
12	0.012	0.11%	0.016	0.07%	0.153			
13	0.034	0.32%	0.036	0.17%	0.210			
14	0.031	0.29%	0.055	0.26%	0.131			
15	0.072	0.67%	0.085	0.40%	0.150			
16	0.053	0.50%	0.064	0.30%	0.115			
17	0.062	0.58%	0.074	0.35%	0.132			
18	0.053	0.49%	0.061	0.29%	0.102			
19	0.054	0.51%	0.065	0.30%	0.118			
20	0.046	0.43%	0.054	0.25%	0.092			
21	0.055	0.51%	0.064	0.30%	0.107			
22	0.041	0.38%	0.048	0.22%	0.084			
23	0.049	0.46%	0.057	0.27%	0.098			
24	0.043	0.40%	0.049	0.23%	0.077			
25	0.043	0.40%	0.051	0.24%	0.090			
26	0.038	0.36%	0.044	0.20%	0.071			
27	0.045	0.42%	0.052	0.24%	0.083			
28	0.034	0.31%	0.039	0.18%	0.066			
29	0.041	0.38%	0.047	0.22%	0.078			
30	0.036	0.34%	0.041	0.19%	0.061			
31	0.036	0.34%	0.042	0.20%	0.073			
32	0.033	0.31%	0.037	0.17%	0.058			

4

Suzhoù Bytewatt lechnology CO., Etd.								
33	0.039	0.37%	0.044	0.21%	0.068			
34	0.029	0.27%	0.033	0.15%	0.054			
35	0.035	0.33%	0.040	0.19%	0.064			
36	0.032	0.30%	0.036	0.17%	0.051			
37	0.032	0.30%	0.036	0.17%	0.061			
38	0.029	0.27%	0.032	0.15%	0.048			
39	0.035	0.33%	0.039	0.18%	0.058			
40	0.026	0.24%	0.029	0.14%	0.046			
THD ¹	0.221	2.89%	0.355	2.13%	5%			
PWHD ² 0.438 2.19% 0.596 2.98% 23%								
¹ THD = Total Harmonic Distortion ² PWHD = Partial Weighted Harmonic Distortion								

3. Power Quality – Voltage fluctuations and Flicker:								
		Starting			Stoppi	ng	Running	
	dmax	dc	d(t)	dmax	dc	d(t)	Pst	Plt 2h
Measured Values	0.31%	0.31%	0ms	0.34%	0.26%	6 Oms	0.021	0.021
Normalised impedance	0.31%	0.31%	0ms	0.34%	0.26%	6 Oms	0.021	0.021
Limit	4%	3.3%	3.3%	4%	3.3%	3.3%	1.0	0.65
Test Impedance	R	().4	Ω		XI	0.25	Ω
Standard Impedance	R	().4	Ω		XI	0.25	Ω
Max. Impedance	R	Ν	I/A	Ω		XI	N/A	Ω

4

4. Power quality – DC injection:							
Output power	20%	50%	75%	100%			
Test value(A)	23.8mA	27.1mA	31.2mA	34.8mA			
Test value(%)	0.11%	0.12%	0.14%	0.16%			
Limit	0.25%	0.25%	0.25%	0.25%			

5. Power Factor:						
Voltage	0.94 p.u (216.2 V)	1 pu (230 V)	1.1 pu (253 V)			
Measured Value	0.999	0.999	0.999			
Power Factor Limit	>0.95	>0.95	>0.95			

6. Protection – Frequency tests:								
	Setting		Trip test		"No trip tests"			
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Status		
UF 1	47.5 Hz	20 s	47.52Hz	20.03s	47.7 Hz/30 s	No trip		
UF 2	47 Hz	0.5 s	46.96Hz	0.53s	47.2 Hz/19.5 s	No trip		
					46.8 Hz /0.45 s	No trip		
OF	52 Hz	0.5 s	52.03Hz	0.53s	51.8 Hz/120.0 s	No trip		
					52.2 Hz/0.45 s	No trip		

Note. For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests:								
	Setting		Trip test		"No trip tests"			
	Voltage	Time delay	Voltage	Time delay	Voltage/time	Status		
UV	184 V	2.5 s	183.8V	2.53s	188 V/5.0 s	No trip		
					180 V/2.45 s	No trip		
OV 1	262.2 V	1.0 s	262.5V	1.04s	258.2 V/5.0 s	No trip		
OV 2	273.7 V	0.5 s	274.2V	0.54s	269.7 V/0.95 s	No trip		
					277.7 V/0.45 s	No trip		

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8. Protection – Loss of Mains test: PV Inverter: Complete test power and imbalance (Test 22, 12, 5, 31, 21 & 10) – ensure trip time is within limit of 0.5s in accordance with BS EN 62116.

The following sub set of tests should be recorded in the following table.						
Test Power and imbalance	33% -5% Q Test 22	66% -5% Q Test 12	100% -5% P Test 5	33% +5% Q Test 31	66% +5% Q Test 21	100% +5% P Test 10
Trip time. Limit 0.5s	0.31s	0.28s	0.23s	0.32s	0.30s	0.24s

Loss of Mains Protection, Vector Shift Stability test. This test should be carried out in accordance with Annex A.7.1.2.6.

	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.5 Hz	+50 degrees	No trip
Negative Vector Shift	50.5 Hz	- 50 degrees	No trip

Loss of Mains Protection, RoCoF Stability test: This test should be carried out in accordance with Annex A.7.1.2.6.

Ramp range	Test frequency ramp	Test Duration	Confirm no trip
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹	2.1 s	No trip
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	No trip

9. Limited Frequency Sensitive Mode – Over frequency test: The test should be carried out using the specific threshold frequency of 50.4 Hz and Drop of 10%.

1. Measurement a) to g): Active power output =100% PEmax	
--	--

S=5% (40% PEmax / Hz), threshold frequency for start/return: 50.4Hz

Frequency	50.00Hz	50.45Hz	50.70Hz	51.15Hz	50.70Hz	50.45Hz	50.00Hz
Calculated P	3600W	3240W	2880W	2232W	2880W	3240W	3600W
Measured P	3558W	3210W	2849W	2330W	2799W	3193W	3550W
ΔP (%)	N/A	0.69%	0.53%	0.50%	0.83%	0.92%	N/A

2. Measurement a) to g): Active power output 60% after freezing = 100% PEmax

S=5% (40% PEmax / Hz), threshold frequency for start/return: 50.4Hz

Frequency	50.00Hz	50.45Hz	50.70Hz	51.15Hz	50.70Hz	50.45Hz	50.00Hz
Calculated P	2160W	2088W	1728W	1080W	1728W	2088W	2160W
Measured P	2134W	2095W	1739W	1090W	1740W	2073W	2168W
Δ Ρ (%)	N/A	0.19%	0.31%	0.28%	0.33%	-0.42%	N/A
Limit ΔP/P1min:	\pm 10 % of PEmax						

10. Power output with falling frequency test: This test should be carried out in accordance with EN 50438 Annex D.3.2 active power feed-in at under-frequency.

Test sequence	Measured active power output	Frequency	Primary power source
Test a) 50 Hz ± 0.01 Hz	3588 W	50.01 Hz	4500 W
Test b) Point between 49.5 Hz and 49.6 Hz	3580 W	50.01 Hz	4500 W
Test c) Point between 47.5 Hz and 47.6 Hz	3585 W	50.01 Hz	4500 W

11. Fault level contribution: These tests shall be carried out in accordance with EREC G98 Annex A.7.1.5.

For Inverter output				
Time after fault	Volts	Amps		
20ms	52.2V	29.9A		
100ms	51.7V	0A		
250ms	51.3V	0A		
500ms	51.3V	0A		
Time to trip	0.062s	In seconds		

12. Protection – Re-connection timer

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1.

Setting		Measured delay		
30s		32s		
1.16 pu (266.2V)	0.78 pu (180.0V)	47.4 Hz 52.1 Hz		
Not reconnect	Not reconnect Not reconnect		Not reconnect	

13. Self-Monitoring solid state switching: No specified test requirements. Refer to Annex A.7.1.7.

It has been verified that in the event of the solid state switching device failing to disconnect the **Power Park Module**, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.

14. Logic Interface

Excess PV production not used in the installation will be stored in the battery. The battery will be used to power loads in the installation when PV production is not present. Any further excess PV will be exported to the Grid (if DC coupled). An RS485 terminal interface is available for local commands to control the unit. LED Screen is integrated as a logic interface.

15. Cyber Security

The system has no open ports, no generic passwords and all communication between the cloud

and the module are cyber protected to using SSL Level 2 technology. Any software updates via the cloud are protected to ISO27000 Standards. The device complies with all applicable data protection and privacy legislation in force from time to time in the UK including the General Data Protection Regulation ((EU) 2016/679); the Data Protection Act 2018. This includes the Data Protection, Privacy and Electronic Communications (Amendments etc.) (EU Exit) Regulations 2019, as amended and the DPA (the UK GDPR) and any other UK or European Union legislation applicable in the UK relating to personal data and all other legislation and regulatory requirements.